Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Frontiers in cellular and infection microbiology ; 12, 2022.
Article in English | EuropePMC | ID: covidwho-1863930
3.
Res Social Adm Pharm ; 18(7): 3204-3209, 2022 07.
Article in English | MEDLINE | ID: covidwho-1392547

ABSTRACT

The impact of the COVID-19 pandemic on pharmacy education worldwide has been immense, affecting students, educators and regulatory agencies. Pharmacy programmes have had to rapidly adapt in their delivery of education, maintaining standards while also ensuring the safety of all stakeholders. In this commentary, we describe the challenges, compromises and solutions adopted by our institution throughout the pandemic, the lessons learnt, adaptive measures taken, and strategies to develop and future-proof our curricula.


Subject(s)
COVID-19 , Education, Pharmacy , Pharmacy , Students, Pharmacy , COVID-19/epidemiology , Curriculum , Humans , Pandemics
4.
PLoS One ; 16(6): e0253347, 2021.
Article in English | MEDLINE | ID: covidwho-1280628

ABSTRACT

The unprecedented global COVID-19 pandemic has prompted a desperate international effort to accelerate the development of anti-viral candidates. For unknown reasons, COVID-19 infections are associated with adverse cardiovascular complications, implicating that vascular endothelial cells are essential in viral propagation. The etiological pathogen, SARS-CoV-2, has a higher reproductive number and infection rate than its predecessors, indicating it possesses novel characteristics that infers enhanced transmissibility. A unique K403R spike protein substitution encodes an Arg-Gly-Asp (RGD) motif, introducing a potential role for RGD-binding host integrins. Integrin αVß3 is widely expressed across the host, particularly in the endothelium, which acts as the final barrier before microbial entry into the bloodstream. This mutagenesis creates an additional binding site, which may be sufficient to increase SARS-CoV-2 pathogenicity. Here, we investigate how SARS-CoV-2 passes from the epithelium to endothelium, the effects of αVß3 antagonist, Cilengitide, on viral adhesion, vasculature permeability and leakage, and also report on a simulated interaction between the viral and host protein in-silico.


Subject(s)
Endothelium, Vascular/virology , Integrin alphaVbeta3/metabolism , SARS-CoV-2/pathogenicity , Snake Venoms/pharmacology , Antigens, CD/metabolism , Binding Sites , COVID-19/metabolism , COVID-19/physiopathology , Caco-2 Cells , Cadherins/metabolism , Computer Simulation , Endothelium, Vascular/cytology , Endothelium, Vascular/physiopathology , Host-Pathogen Interactions/drug effects , Humans , Integrin alphaVbeta3/chemistry , Models, Molecular , Mutation , Permeability , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL